`sin(4x+\pi/3)=-cos(2x+\pi/3)`
`<=>sin(4x+\pi/3)=cos([2\pi]/3-2x)`
`<=>sin(4x+\pi/3)=sin([-\pi]/6+2x)`
`<=>` $\left[\begin{matrix} 4x+\pi/3=[-\pi]/6+2x+k2\pi\\ 4x+\pi/3=[7\pi]/6-2x+k2\pi\end{matrix}\right.$ `(k in ZZ)`
`<=>`$\left[\begin{matrix} x=[-\pi]/4+k\pi\\ x=[5\pi]/12+[k\pi]/3\end{matrix}\right.$ `(k in ZZ)`
Vậy `S={[-\pi]/4+k\pi;[5\pi]/12+[k\pi]/3|k in ZZ}`
Đúng 2
Bình luận (10)