\(\frac{\left(x-1\right)\left(x+5\right)}{3}-\frac{\left(x+2\right)\left(x+5\right)}{12}=\frac{\left(x-1\right)\left(x+2\right)}{4}\)
⇔4(x2+4x-5)-(x+2)(x+5)=3(x2+x-2)
⇔4x2+16x-20-x2-7x-10=3x2+3x-6
⇔4x2-x2-3x2+16x-7x-3x=-6+10+20
⇔6x=24
⇔x=4
Vậy phương trình có nghiệm là x=4
\(\frac{\left(x+1\right)\left(x+5\right)}{3}-\frac{\left(x+2\right)\left(x+5\right)}{12}=\frac{\left(x-1\right)\left(x+2\right)}{4}\)
⇔4(x+1)(x+5)-(x+2)(x+5)=3(x-1)(x+2)
⇔4x2+24x+20-x2-7x-10=3x2+3x-6
⇔4x2+24x-x2-7x-3x2-3x=-6-20+10
⇔14x=-16
⇔x=\(\frac{-8}{7}\)
Vậy phương trình có nghiệm là x=\(\frac{-8}{7}\)