Phép nhân và phép chia các đa thức

NA

GIải phương trình sau:

a) \(\left(x-1\right)^3+\left(2x+3\right)^3=27x^3+8\)

b) \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)

HT
3 tháng 4 2018 lúc 15:49

\(b,\left(x^2+1\right)^2+3x\left(X^2+1\right)+2x^2=0\)

đặt x^2+1 là y ta đc

\(y^2+3xy+2x^2=0< =>y^2+2xy+xy+2x^2=0< =>y\left(y+2x\right)+x\left(y+2x\right)=0< =>\left(y+x\right)\left(y+2x\right)=0< =>\left[{}\begin{matrix}y=-x\left(1\right)\\y=-2x\left(2\right)\end{matrix}\right.\)

giải 1 ta có;\(x^2+1=-x< =>x^2+x+1=0< =>x^2+2.\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0< =>\left(x+\dfrac{1}{2}\right)^2=-\dfrac{3}{4}\left(vônghiemej\right)\)

giải 2:\(x^2+1=-2x< =>x^2+2x+1=0< =>\left(x+1\right)^2=0< =>x+1=0< =>x=-1\left(nhận\right)\)

vậy......

Bình luận (0)
PD
3 tháng 4 2018 lúc 18:29

b)Cách khác:\(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)

\(\Leftrightarrow\left(x^2+1\right)^2+x\left(x^2+1\right)+2x\left(x^2+1\right)+2x^2=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2+x+1\right)+2x\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=0\left(loai\right)\\x^2+2x+1=0\end{matrix}\right.\)

\(\Leftrightarrow x=-1\)

Bình luận (0)

Các câu hỏi tương tự
VL
Xem chi tiết
HD
Xem chi tiết
DT
Xem chi tiết
NH
Xem chi tiết
TC
Xem chi tiết
NC
Xem chi tiết
NK
Xem chi tiết
QN
Xem chi tiết
DQ
Xem chi tiết