1. Giải các phương trình sau:
a)\(\sqrt[4]{x-\sqrt{x^2-1}}+\sqrt[]{x+\sqrt{x^2-1}}=2\)
b)\(x^2-x-\sqrt{x^2-x+13}=7\)
c)\(x^2+2\sqrt{x^2-3x+1}=3x+4\)
d)\(2x^2+5\sqrt{x^2+3x+5}=23-6x\)
e)\(\sqrt{x^2+2x}=-2x^2-4x+3\)
f)\(\sqrt{\left(x+1\right)\left(x+2\right)}=x^2+3x+4\)
2. Giải các bất phương trình sau:
1)\(\sqrt{x^2-4x+5}\ge2x^2-8x\)
2)\(2x^2+4x+3\sqrt{3-2x-x^2}>1\)
3)\(\dfrac{\sqrt{-3x+16x-5}}{x-1}\le2\)
4)\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
5)\(\dfrac{9x^2-4}{\sqrt{5x^2-1}}\le3x+2\)
Giải phương trình \(2\sqrt{\left(x-1\right)\left(x+2\right)}+3=\sqrt{x-1}+6\sqrt{x+2}\)
Giải phương trình sau:
\(2\sqrt{1-x}-\sqrt{x+1}+3\sqrt{1-x^2}=3-x\left(x\in R\right)\)
Giải phương trình sau: \(\left(1-\sqrt{1-x}\right)\sqrt[3]{2-x}=x\)
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
Giải các phương trình sau
a/ \(\sqrt{2x+3}+\sqrt{x+1}=3x+2.\sqrt{\left(2x+3\right)\left(x+1\right)}-16\)
b/ \(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+9}\)
c/ \(\sqrt{x+1}+\sqrt{4-x}+\sqrt{\left(x+1\right)\left(4-x\right)}=5\)
Giải phương trình
a) \(\sqrt{\left(x+1\right)\left(2-x\right)}=1+2x-x^2\)
b) \(\sqrt{x+1}+\sqrt{4-x}+\sqrt{\left(x+1\right)\left(4-x\right)}=5\)
c) \(2\left(x^2-2x\right)+\sqrt{x^2-2x+3}-6=0\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}y^3-4y^2+4y=\sqrt{x+1}\left(y^2-5y+4+\sqrt{x+1}\right)\\2\sqrt{x^2-3x+3}+6x-7=y^2\left(x-1\right)^2+\left(y^2-1\right)\sqrt{3x-2}\end{matrix}\right.\)
Giải hệ phương trình :
\(\begin{cases}3xy\left(1+\sqrt{9y^2+1}\right)=\frac{1}{\sqrt{x+1}-\sqrt{x}}\\x^3\left(9y^2+1\right)+4\left(x^2+1\right)\sqrt{x}=10\end{cases}\)