Đk: \(sinx\ne\frac{1}{2}\)
\(\frac{cosx-\sqrt{3}sinx}{2sinx-1}=0\)
\(\Rightarrow cosx-\sqrt{3}sinx=0\)
\(\Leftrightarrow\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx=0\)
\(\Leftrightarrow sin\frac{\pi}{6}cosx-cos\frac{\pi}{6}sinx=0\)
\(\Leftrightarrow sin\left(\frac{\pi}{6}-x\right)=0\)
\(\Leftrightarrow\frac{\pi}{6}-x=k\pi\)
\(\Leftrightarrow x=\frac{\pi}{6}+k\pi\) , \(k\in Z\)
So đk: \(x=\frac{7\pi}{6}+k2\pi\), \(k\in Z\) ( do loại \(k=0,k=2\))