Bài 4. Phương trình quy về phương trình bậc nhất một ẩn

HM

Giải phương trình \(\frac{1}{{x - 1}} - \frac{{4x}}{{{x^3} - 1}} = \frac{x}{{{x^2} + x + 1}}.\)

HM
28 tháng 3 2024 lúc 21:27

ĐKXĐ: \(x \ne 1.\)

Quy đồng mẫu thức, ta được

\(\frac{{1.\left( {{x^2} + x + 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} - \frac{{4x}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{x\left( {x - 1} \right)}}{{\left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}}\)

Khử mẫu ta được \({x^2} + x + 1 - 4x = x\left( {x - 1} \right)\)

\(\begin{array}{l}{x^2} + x + 1 - 4x = {x^2} - x\\{x^2} - 3x - {x^2} + x =  - 1\\ - 2x =  - 1\end{array}\)

\(x = \frac{1}{2}\left( {t/m} \right).\)

Vậy nghiệm của phương trình là \(x = \frac{1}{2}.\)

Bình luận (0)