Violympic toán 8

BT

giải phương trình:

\(\dfrac{x-1}{2012}+\dfrac{x-2}{2011}+\dfrac{x-3}{2010}+...+\dfrac{x-2012}{1}=2012\)

HT
10 tháng 4 2018 lúc 20:45

\(\dfrac{x-1}{2012}+\dfrac{x-2}{2011}+\dfrac{x-3}{2010}+...+\dfrac{x-2012}{1}=2012\)

<=>\(\dfrac{x-1}{2012}-1+\dfrac{x-2}{2011}-1+\dfrac{x-3}{2010}-1+...+\dfrac{x-2012}{1}-1=0\)

<=>\(\dfrac{x-2013}{2012}+\dfrac{x-2013}{2011}+\dfrac{x-2013}{2010}+...+\dfrac{x-2013}{1}=0\)

<=>\(\left(x-2013\right)\left(\dfrac{1}{2012}+\dfrac{1}{2011}+...+1\right)=0\)

do 1/2012+1/2011....+1 khác 0 =>x-2013=0<=>x=2013

vậy..........................

Bình luận (0)
TH
10 tháng 4 2018 lúc 20:48

\(\dfrac{x-1}{2012}+\dfrac{x-2}{2011}+\dfrac{x-3}{2010}+...+\dfrac{x-2012}{1}=2012\)

\(\left(\dfrac{x-1}{2012}+\dfrac{x-2}{2011}+\dfrac{x-3}{2010}+...+\dfrac{x-2012}{1}\right)-2012=0\)

\(\Rightarrow\dfrac{x-2013}{2012}+\dfrac{x-2013}{2011}+\dfrac{x-2013}{2010}+...+\dfrac{x-2013}{1}=0\)

\(\Rightarrow x-2013\left(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}+...+\dfrac{1}{1}\right)=0\)

\(x-2013\left(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}+...+\dfrac{1}{1}\right)=0\)nên x - 2013 hoặc \(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}+...+\dfrac{1}{1}\) = 0. Nhưng \(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}+...+\dfrac{1}{1}\ne0\) nên x - 2013 = 0. Vì vậy x = 2013.

Vậy...

Bình luận (0)
TT
10 tháng 4 2018 lúc 20:49

\(\dfrac{x-1}{2012}+\dfrac{x-2}{2011}+\dfrac{x-3}{2010}+...+\dfrac{x-2012}{1}=2012\)

\(\Leftrightarrow\left(\dfrac{x-1}{2012}-1\right)+\left(\dfrac{x-2}{2011}-1\right)+\left(\dfrac{x-3}{2010}-1\right)+...+\left(\dfrac{x-2012}{1}-1\right)=0\)

\(\Leftrightarrow\dfrac{x-2013}{2012}+\dfrac{x-2013}{2011}+\dfrac{x-2013}{2010}+...+\dfrac{x-2013}{1}=0\)

\(\Leftrightarrow\left(x-2013\right)\left(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}+...+1\right)=0\)

Dễ thấy: \(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}+...1\ne0\)

\(\Rightarrow x-2013=0\)

\(\Leftrightarrow x=2013\)

Vậy...

Bình luận (0)
HH
10 tháng 4 2018 lúc 20:55

\(\dfrac{x-1}{2012}+\dfrac{x-2}{2011}+\dfrac{x-3}{2010}+....+\dfrac{x-2012}{1}-2012=0\)

<=>\(\dfrac{x-1}{2012}-1+\dfrac{x-2}{2011}-1+\dfrac{x-3}{2010}+...+\dfrac{x-2012}{1}-1=0\)

<=> \(\dfrac{x-1-2012}{2012}+\dfrac{x-2-2011}{2011}+\dfrac{x-3-2010}{2010}+...+\dfrac{x-2012-1}{1}=0\)

<=> \(\dfrac{x-2013}{2012}+\dfrac{x-2013}{2011}+\dfrac{x-2013}{2010}+...+\dfrac{x-2013}{1}=0\)

<=>\(\left(x-2013\right)\left(\dfrac{1}{2012}+\dfrac{1}{2011}+\dfrac{1}{2010}+....+1\right)=0\)

=> x-2013=0

<=>x=2013

vậy x=2013 là nghiệm của pt

Bình luận (0)

Các câu hỏi tương tự
TM
Xem chi tiết
H24
Xem chi tiết
BT
Xem chi tiết
BB
Xem chi tiết
DH
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
NL
Xem chi tiết
NA
Xem chi tiết