c,
<=> \(\left[\begin{matrix}x-1=0\\x^2+5x+2=0\\x^3-1=0\end{matrix}\right.\)
+/ x - 1 = 0 <=> x = 1
+/x2 + 5x + 2 =0 <=> (x + \(\frac{5}{2}\))2 - \(\frac{17}{4}\)= 0 <=> (x + \(\frac{5}{2}\))2 = \(\frac{17}{4}\)<=> x + \(\frac{5}{2}\)= \(\pm\)\(\sqrt{\frac{17}{4}}\)
<=> x = \(\pm\)\(\sqrt{\frac{17}{4}}\) - \(\frac{5}{2}\)
+/ x3 - 1 = 0 <=.> ( x - 1 )(x2 + x + 1 ) = 0
<=> x = 1
Vậy phương trình có Nghiệm là x = 1 và x = \(\pm\)\(\sqrt{\frac{17}{4}}\) - \(\frac{5}{2}\)
d,
x2 + (x + 3)(10 -2x ) = 9
<=> x2 + 10x - 2x2 + 30 - 6x -9 = 0
<=> x2 + 4x + 21 = 0
<=> 7x - x2 + 21 -3x = 0
<=> (x +3)(7-x) =0
<=> \(\left[\begin{matrix}7-x=0\\x+3=0\end{matrix}\right.\) <=> \(\left[\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
Vậy pt có nghiệm là x = -3 và x = 7
a/
(3x-1)2+(5-x)(3x-1)=0
\(\Leftrightarrow\)(3x-1)(3x-1+5-x)=0
\(\Leftrightarrow\)(3x-1)(2x+4)=0
\(\Leftrightarrow\)\(\left[\begin{matrix}3x-1=0\\2x+4=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[\begin{matrix}x=\frac{1}{3}\\x=-2\end{matrix}\right.\)
vậy x=1/3, x=-2
b/(x+3)(2-3x)=x2+6x+9
\(\Leftrightarrow\)(x+3)(2-3x)=(x+3)2 \(\Leftrightarrow\)(x+3)(2-3x)-(x+3)2 =0 \(\Leftrightarrow\)(x+3)(2-3x-x-3) =0 \(\Leftrightarrow\)(x+3)(-4x-1)=0 \(\Leftrightarrow\)\(\left[\begin{matrix}x+3=0\\-4x-1=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[\begin{matrix}x=-3\\x=-\frac{1}{4}\end{matrix}\right.\) vậy x=-3,x=-1/4a) (3x-1)2+(5-x)(3x-1)=0
\(\Leftrightarrow\left(3x-1\right)\left(3x-1+5-x\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}3x-1=0\\2x+4=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}3x=1\\2x=-4\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=\frac{1}{3}\\x=-2\end{matrix}\right.\)
Vậy: \(x=-2;\frac{1}{3}\)
b) (x+3)(2-3x)=x2+6x+9
\(\Leftrightarrow\left(x+3\right)\left(2-3x\right)=\left(x+3\right)^2\)
\(\Leftrightarrow\left(x+3\right)\left(2-3x\right)-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)\left(2-3x-x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(-4x-1\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x+3=0\\-4x-1=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-3\\x=-\frac{1}{4}\end{matrix}\right.\)
Vậy: \(x=-3;-\frac{1}{4}\)