Chương I - Căn bậc hai. Căn bậc ba

PT

Giải phương trình

5.\(\left(4x-1\right)\sqrt{x^2+1}=2x^2-2x+2\)

6.\(3\sqrt{x^3+8}=2\left(x^2-3x+2\right)\)

7.\(6+3\sqrt{x-2}=2x+\sqrt{x+6}\)

na
6 tháng 11 2017 lúc 21:29

~ Câu 1: \(\left(4x-1\right)\sqrt{x^2+1}=2x^2-2x+2\left(1\right)\)

\(\Leftrightarrow2\left(x^2+1\right)-\left(4x-1\right)\sqrt{x^2+1}-2x=0\)

Đặt \(x^2+1=a\left(a\ge1\right)\)

\(\left(1\right)\Rightarrow2a^2-\left(4x-1\right)a-2x=0\left(1'\right)\)

\(\Delta=\left[-\left(4x-1\right)\right]^2-4\times2\times\left(-2x\right)\)

\(=\left(16x^2-8x+1\right)+16x\)

\(=\left(4x+1\right)^2>0\)

\(\Rightarrow\left(1'\right)\) có 2 no phân biệt:

\(a_1=\dfrac{-\left[-\left(4x-1\right)\right]+\sqrt{\left(4x+1\right)^2}}{2\times2}=2x\)

\(a_2=\dfrac{-\left[-\left(4x-1\right)\right]-\sqrt{\left(4x+1\right)^2}}{2\times2}=-\dfrac{1}{2}\left(l\right)\)

\(\Rightarrow\sqrt{x^2+1}=2x\)

\(\Leftrightarrow x^2+1=4x^2\)

\(\Leftrightarrow3x^2-1=0\) (vô lý)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{1}{3}}\left(n\right)\\x=-\sqrt{\dfrac{1}{3}}\left(l\right)\end{matrix}\right.\)

Vậy (1) có tập nghiệm \(S=\left\{\sqrt{\dfrac{1}{3}}\right\}\)

._._._._._.

Đkxđ: \(x>\dfrac{1}{4}\)

Giải thích: \(VT=2x^2-2x+2\ge\dfrac{3}{2}>0\forall x\)

\(\sqrt{x^2+1}>0\forall x\)

\(\Rightarrow4x-1>0\)

\(\Leftrightarrow x>\dfrac{1}{4}\)

Bình luận (0)

Các câu hỏi tương tự
AQ
Xem chi tiết
HC
Xem chi tiết
LG
Xem chi tiết
QE
Xem chi tiết
TD
Xem chi tiết
LD
Xem chi tiết
DD
Xem chi tiết
HC
Xem chi tiết
HC
Xem chi tiết