Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

MA

Giải phương trình: \(3Cot^2x+2\sqrt{2}Sin^2x=\left(2+3\sqrt{2}\right)Cosx\)

HP
1 tháng 8 2021 lúc 14:28

ĐK: \(x\ne k\pi\)

Đặt \(\left\{{}\begin{matrix}cotx=a\\sinx=b\end{matrix}\right.\left(a\in R;b\in\left[-1;1\right]\right)\), khi đó:

\(3cot^2x+2\sqrt{2}sin^2x=\left(2+3\sqrt{2}\right)cosx\)

\(\Leftrightarrow3a^2+2\sqrt{2}b^2=\left(2+3\sqrt{2}\right)ab\)

\(\Leftrightarrow3a^2-2ab+2\sqrt{2}b^2-3\sqrt{2}ab=0\)

\(\Leftrightarrow\left(3a-2b\right)\left(a-\sqrt{2}b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3a=2b\\a=\sqrt{2}b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3cotx=2sinx\\cotx=\sqrt{2}sinx\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3cosx=2sin^2x\\cosx=\sqrt{2}sin^2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3cosx=2-2cos^2x\\cosx=\sqrt{2}-\sqrt{2}cos^2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2cos^2x+3cosx-2=0\\\sqrt{2}cos^2x+cosx-\sqrt{2}=0\end{matrix}\right.\)

TH1: \(2cos^2x+3cosx-2=0\Leftrightarrow cosx=\dfrac{1}{2}\Leftrightarrow x=\pm\dfrac{\pi}{3}+k2\pi\)

TH2: \(\sqrt{2}cos^2x+cosx-\sqrt{2}=0\Leftrightarrow cosx=\dfrac{\sqrt{2}}{2}\Leftrightarrow x=\pm\dfrac{\pi}{4}+k2\pi\)

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
NC
Xem chi tiết
JE
Xem chi tiết
NN
Xem chi tiết
HA
Xem chi tiết
NP
Xem chi tiết
MT
Xem chi tiết
TT
Xem chi tiết
TH
Xem chi tiết