\(\Leftrightarrow\cos4x+\cos2x+\sqrt{3}\left(1+\sin2x\right)=\sqrt{3}\left(1+\cos\left(4x+\frac{\pi}{2}\right)\right)\)
\(\Leftrightarrow\cos4x+\sqrt{3}\sin4x+\sqrt{3}\sin2x=0\)
\(\Leftrightarrow\sin\left(4x+\frac{\pi}{6}\right)+\sin\left(2x+\frac{\pi}{6}\right)=0\)
\(\Leftrightarrow2\sin\left(3x+\frac{\pi}{6}\right)\cos x=0\)
\(\Leftrightarrow\begin{cases}x=-\frac{\pi}{18}+k\frac{\pi}{3}\\x=\frac{\pi}{2}+k\pi\end{cases}\)
Vậy phương trình có 2 nghiệm \(x=-\frac{\pi}{18}+k\frac{\pi}{3}\) và \(x=\frac{\pi}{2}+k\pi\)