Violympic toán 8

LC

Giải phương trình

1/ (x2+x)2 + 4(x2+x)=12

2/ 6x4- 5x3 - 38x2 - 5x + 6 = 0

VT
4 tháng 2 2018 lúc 10:02

1 ) \(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)

Đặt \(t=x^2+x\), ta được :

\(t^2+4t-12=0\)

\(\Leftrightarrow t^2-2t+6t-12=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-6\end{matrix}\right.\)

+ ) Khi \(t=2,\) thì :

\(x^2+x=2\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

+ ) Khi \(t=-6,\) thì :

\(x^2+x=-6\)

\(\Leftrightarrow x^2+x+6=0\)

\(\Leftrightarrow x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{23}{4}=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}=0\) ( vô lí )

Vậy .........

2 ) \(6x^4-5x^3-38x^2-5x+6=0\)

\(\Leftrightarrow6x^4-18x^3+13x^3-39x^2+x^2-3x-2x+6=0\)

\(\Leftrightarrow6x^3\left(x-3\right)+13x^2\left(x-3\right)+x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(6x^3+13x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(6x^3+12x^2+x^2+2x-x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left[6x^2\left(x+2\right)+x\left(x+2\right)-\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)\left(6x^2+x-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)\left(6x^2+3x-2x-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)\left[3x\left(2x+1\right)-\left(2x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)\left(3x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=\dfrac{1}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PP
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
LN
Xem chi tiết
HG
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết
PP
Xem chi tiết