Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

KR

Giải hệ

\(\left\{{}\begin{matrix}x^2+y^4+xy=2xy^2+7\\xy^3-x^2y+4xy+11x=28+11y^2\end{matrix}\right.\)

PQ
28 tháng 3 2021 lúc 9:06

\(\left\{{}\begin{matrix}x^2+y^4+xy=2xy^2+7\\xy^3-x^2y+4xy+11x=28+11y^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-y^2\right)^2+xy-7=0\\\left(x^{ }-y^2\right)\left(11-xy\right)+4\left(xy-7\right)=0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x-y^2=a\\xy-7=b\end{matrix}\right.\) hệ trở thành \(\left\{{}\begin{matrix}a^2+b=0\\a\left(4-b\right)+4b=0\end{matrix}\right.\)\(\Rightarrow a\left(4+a^2\right)-4a^2=0\Leftrightarrow a\left(a^2-4a+4\right)=0\Leftrightarrow a\left(a-2\right)^2=0\Leftrightarrow\left[{}\begin{matrix}a=0;b=0\\a=2;b=-4\end{matrix}\right.\)

Giải từng trường hợp rồi kết hợp nghiệm

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
KR
Xem chi tiết
NL
Xem chi tiết
NA
Xem chi tiết
VT
Xem chi tiết
PT
Xem chi tiết
DV
Xem chi tiết
KR
Xem chi tiết
VQ
Xem chi tiết