Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

PT

giải hệ phương trình:

1, \(\left\{{}\begin{matrix}x^3+2y^2=x^2y+2xy\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}2\sqrt{x+y^2+y+3}-3\sqrt{y}=\sqrt{x+2}\\y^3+y^2-3y-5=3x-3\sqrt[3]{x}+2\end{matrix}\right.\)

3, \(\left\{{}\begin{matrix}\left(x-2\right)\left(2y-1\right)=x^3+20y-28\\2\left(\sqrt{x+2y}+y\right)=x^2+x\end{matrix}\right.\)

NT
26 tháng 1 2020 lúc 11:11

Câu 1.

Điều kiện: \(x^2\ge2y+1\)

Từ $(1)$ ta được \(\left(x^2-2y\right)\left(x-y\right)=0\Leftrightarrow\left[{}\begin{matrix}x^2=2y\left(L\right)\\x=y\end{matrix}\right.\)

Khi đó $(2)$ \(\Leftrightarrow2\sqrt{x^2-2x-1}+\sqrt[3]{x^3-14}=x-2\Leftrightarrow2\sqrt{x^2-2x-1}+\sqrt[3]{x^3-14}-\left(x-2\right)=0\)

\(\begin{array}{l} \Leftrightarrow 2\sqrt {{x^2} - 2x - 1} + \dfrac{{{x^3} - 14 - {{\left( {x - 2} \right)}^3}}}{{\sqrt[3]{{{{\left( {{x^3} - 14} \right)}^2}}} + \sqrt[3]{{\left( {{x^3} - 14} \right)}}\left( {x - 2} \right) + {{\left( {x - 2} \right)}^2}}} = 0\\ \Leftrightarrow 2\sqrt {{x^2} - 2x + 1} + \dfrac{{6{x^2} - 12x - 6}}{{\sqrt[3]{{{{\left( {{x^3} - 14} \right)}^2}}} + \sqrt[3]{{\left( {{x^3} - 14} \right)}}\left( {x - 2} \right){{\left( {x - 2} \right)}^2}}} = 0\\ \Leftrightarrow 2\sqrt {{x^2} - 2x + 1} \left[ {1 + \dfrac{{3\sqrt {{x^2} - 2x - 1} }}{{\sqrt[3]{{{{\left( {{x^3} - 14} \right)}^2}}} + \sqrt[3]{{\left( {{x^3} - 14} \right)}}\left( {x - 2} \right){{\left( {x - 2} \right)}^2}}}} \right] = 0 \Leftrightarrow \sqrt {{x^2} - 2x - 1} = 0 \end{array} \)

Từ đó ta được \(x^2-2x-1=0\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{2}\Rightarrow y=1+\sqrt{2}\\x=1-\sqrt{2}\Rightarrow y=1-\sqrt{2}\end{matrix}\right.\)

Vậy hệ phương trình đã cho có nghiệm $(x;y)=$\(\left\{\left(1+\sqrt{2};1+\sqrt{2}\right),\left(1-\sqrt{2};1-\sqrt{2}\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
26 tháng 1 2020 lúc 18:24

Câu 2.

Điều kiện: \(y \ge 0,x \ge -2\)

Từ phương trình $(1)$ tương đương:

$$2\sqrt{x+y^2+y+3}=3\sqrt{y}+\sqrt{x+2}$$

Ta có:

$$3\sqrt y + \sqrt {x + 2} = \sqrt 3 .\sqrt {3y} + 1.\sqrt {x + 2} \le 2\sqrt {3y + x + 2}$$

Ta chứng minh:

$$2\sqrt {3y + x + 2} \le 2\sqrt {x + {y^2} + y + 3} \Leftrightarrow {\left( {y - 1} \right)^2} \ge 0$$

Đẳng thức xảy ra khi $y=1$ và \(\sqrt{y}=\sqrt{x+2}\Rightarrow x=-1\)

Thay vào phương trình $(2)$ thấy thỏa mãn.

Vậy nghiệm hệ phương trình $(x;y)=(-1;1)$

Bình luận (0)
 Khách vãng lai đã xóa
NT
26 tháng 1 2020 lúc 18:34
Câu 3:

Phương trình thứ hai của hệ tương đương:

$$x + 2y + 2\sqrt {x + 2y} + 1 = {x^2} + 2x - 1 \Leftrightarrow {\left( {\sqrt {x + 2y} + 1} \right)^2} = {\left( {x + 1} \right)^2} \Leftrightarrow \left[ \begin{array}{l}
\sqrt {x + 2y} = x\\
\sqrt {x + 2y} = - x - 2
\end{array} \right.$$

$TH1:$ \(\sqrt{x+2y}=x\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\2y=x^2-x\end{matrix}\right.\) thay vào phương trình thứ nhất ta được \(13x^2-11x-30=0\)

\( \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} x = 2 \Rightarrow y = 0\\ x = 2 \Rightarrow - 3 \end{array} \right.\\ \left\{ \begin{array}{l} x = - \dfrac{{15}}{3} \Rightarrow y = 0\\ x = - \dfrac{{15}}{4} \Rightarrow y = 4 \end{array} \right. \end{array} \right.\)

$TH2:$ \(\sqrt{x+2y}=-x-2\Leftrightarrow\left\{{}\begin{matrix}x+2\le0\\2y=x^2+x+1\end{matrix}\right.\) thay vào phương trình thứ nhất ta được phương trình bậc hai theo $x$

Tự giải tiếp nhé!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DV
Xem chi tiết
DV
Xem chi tiết
KR
Xem chi tiết
NL
Xem chi tiết
TN
Xem chi tiết
VQ
Xem chi tiết
PT
Xem chi tiết
QN
Xem chi tiết
TM
Xem chi tiết