Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

TN

giải hệ : \(\left\{{}\begin{matrix}x^3+2y^2-2xy=x^2y\\2+căn3\sqrt[]{y^3-14}=x-2\sqrt{x^2-2y-1}\end{matrix}\right.\)

RT
16 tháng 1 2021 lúc 11:28

\(\left\{{}\begin{matrix}x^3-x^2y-2xy+2y^2=0\\2+\sqrt[3]{y^3-14}=x-2\sqrt{x^2-2y-1}\end{matrix}\right.\) điều kiện \(\left(\left\{{}\begin{matrix}y^3>14\\x^2>2y+1\end{matrix}\right.\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(x-y\right)-2y\left(x-y\right)=0\\2+\sqrt[3]{y^3-14}=x-2\sqrt{x^2-2y-1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(x^2-2y\right)=0\\2+\sqrt[3]{y^3-14}=x-2\sqrt{x^2-2y-1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\2+\sqrt[3]{y^3-14}=x-2\sqrt{x^2-2y-1}\end{matrix}\right.\) vì( \(x^2-2y-1>0\) nên \(x^2-2y\ne0\))

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\2+\sqrt[3]{x^3-14}=x-2\sqrt{x^2-2x-1}\end{matrix}\right.\)

\(\Rightarrow\sqrt[3]{x^3-14}=x-2-2\sqrt{x^2-2x-1}\)

vì \(\sqrt{x^2-2x-1}\ge0\forall x\)

\(\Leftrightarrow-2\sqrt{x^2-2x-1}\le0\forall x\)

\(\Leftrightarrow x-2-2\sqrt{x^2-2x-1}\le x-2\forall x\)

\(\Leftrightarrow\sqrt[3]{x^3-14}\le x-2\forall x\)

\(\Leftrightarrow x^3-14\le x^3-6x^2+12x-8\)

\(\Leftrightarrow-6x^2+12x+6\ge0\)

\(\Leftrightarrow x^2-2x-1\le0\)

dấu = xảy ra khi \(x^2-2x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y=1+\sqrt{2}\\x=y=1-\sqrt{2}\end{matrix}\right.\)

 

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
DV
Xem chi tiết
AT
Xem chi tiết
AT
Xem chi tiết
KR
Xem chi tiết
DV
Xem chi tiết
QN
Xem chi tiết
VQ
Xem chi tiết
PT
Xem chi tiết