Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

AV

giải hệ \(\hept{\begin{cases}x^4-y^4=15\\x^3y-y^3x=6\end{cases}}\)

DT
25 tháng 11 2017 lúc 21:51

Tích chéo 2 hpt ta có:

\(6x^4-6y^4=15 x^3y-15y^3x\)

<=>\(6x^4-6y^4-15x^3y+15y^3x=0\)

<=> \(6(x^2-y^2)(x^2+y^2)-15xy (x^2-y^2)=0\)

<=>\((x^2-y^2)(6x^2+6y^2+15)=0\)

=> x2=y2

=> x=y hoặc x=-y

(*)x=y=>vô nghiệm

(*)x=-y=> vô no

Vậy hpt vô nghiệm

Bình luận (1)
AV
26 tháng 11 2017 lúc 11:41

sai r bạn

Bình luận (1)
LB
25 tháng 12 2017 lúc 18:30

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x^2-y^2\right)=15\\x^2-y^2=\dfrac{6}{xy}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y^2\right).\dfrac{6}{xy}=15\\x^2-y^2=\dfrac{6}{xy}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x^2+6y^2=15xy\\x^2-y^2=\dfrac{6}{xy}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-3y\right)\left(2x-y\right)=0\\x^2-y^2=\dfrac{6}{xy}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x=\dfrac{y}{2}\end{matrix}\right.\\x^2-y^2=\dfrac{6}{xy}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2-y^2=\dfrac{6}{xy}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{y}{2}\\x^2-y^2=\dfrac{6}{xy}\end{matrix}\right.\end{matrix}\right.\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2-x^2=\dfrac{6}{x^2}\left(vl\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x=\dfrac{y}{2}\\\dfrac{y^2}{4}-y^2=\dfrac{12}{y^2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{y}{2}\\\dfrac{3y^2}{4}+\dfrac{12}{y^2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{y}{2}\\3y^4\text{+48}=0\end{matrix}\right.\left(vl\right)\)

vậy hpt không có nghiệm với mọi x,y

Bình luận (0)

Các câu hỏi tương tự
AV
Xem chi tiết
PA
Xem chi tiết
PA
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
PQ
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
PA
Xem chi tiết