9. \(K=2\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{a^2-a}\right)=2\left(\dfrac{1-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\dfrac{\sqrt{a}+1}{a\left(a-1\right)}=2\left(\dfrac{2-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\dfrac{\sqrt{a}+1}{a\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\dfrac{4-2\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.a\left(\sqrt{a}-1\right)=\dfrac{4a-2a\sqrt{a}}{\sqrt{a}}=\dfrac{\sqrt{a}\left(4\sqrt{a}-2a\right)}{\sqrt{a}}=4\sqrt{a}-2a\)