Phương trình bậc nhất một ẩn

H24

Giải các phương trình sau:

a) \(x^4-x^3+2x^2-x+1=0\)

b) \(x^3+2x^2-7x+4=0\)

NH
31 tháng 12 2019 lúc 19:09

a)hình như đề sai
b)\(x^3+2x^2-7x+4=0\)
\(\Leftrightarrow\left(x^3-x^2\right)+\left(3x^2-3x\right)-\left(4x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)+3x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+3x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-x+4x-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[\left(x^2-x\right)+\left(4x-4\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left[x\left(x-1\right)+4\left(x-1\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+4=0\\x-1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\x=1\\x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)
Vậy x=-4 hay x=1

Bình luận (0)
 Khách vãng lai đã xóa
KS
31 tháng 12 2019 lúc 20:15

a) x4 - x3 + 2x2 - x + 1 = 0

=> (x4 + 2x2 + 1) - (x3 + x) = 0

=> (x2 + 1)2 - x(x2 + 1) = 0

=> (x2 + 1)(x2 - x + 1) = 0

=> \(\left[{}\begin{matrix}x^2+1=0\left(loại\right)\\x^2-x+1=0\end{matrix}\right.\)

=> (x2 - x + 1/4) + 3/4 = 0

=> (x - 1/2)2 + 3/4 = 0 (loại)

=> pt vô nghiệm

b) Ta có x3 + 2x2 - 7x + 4 = 0

=> (x3 - x) + (2x2 - 6x + 4) = 0

=> x(x2 - 1) + 2(x2 - 3x + 2) = 0

=> x(x - 1)(x + 1) + 2(x2 - 2x - x + 2) = 0

=> (x - 1)(x2 + x) + 2(x - 1)(x - 2) = 0

=> (x - 1)(x2 + x + 2x - 4) = 0

=> (x - 1)(x2 + 3x - 4) = 0

=> (x - 1)(x2 + 4x - x - 4) = 0

=> (x - 1)2(x + 4) = 0

=> \(\left[{}\begin{matrix}x-1=0\\x+4=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)

Vậy ...

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NK
Xem chi tiết
PK
Xem chi tiết
NH
Xem chi tiết
DH
Xem chi tiết
KD
Xem chi tiết
BH
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
NA
Xem chi tiết