Bất phương trình bậc nhất một ẩn

H24

Giải các phương trình

a) 3(x-1)(2x-1) = 5(x+8)(x-1)

b) 9x\(^2\) -1=(3x+1)(4x+1)

c) (2x+1)\(^2\)= (x-1)\(^2\)

d) \(2x^3+3x^2-32x=48\)

e) x\(^2\)+2x-15=0

TT
23 tháng 4 2019 lúc 18:43

a. \(3\left(x-1\right)\left(2x-1\right)=5\left(x+8\right)\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left[3\left(2x-1\right)-5\left(x+8\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x-3-5x-40\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-43\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=43\end{matrix}\right.\)

b. \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)

\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)=\left(3x+1\right)\left(4x+1\right)\)

\(\Leftrightarrow\left(3x+1\right)\left(3x-1-4x-1\right)=0\)

\(\Leftrightarrow-\left(3x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=-2\end{matrix}\right.\)

c. \(\left(2x+1\right)^2=\left(x-1\right)^2\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)

\(\Leftrightarrow3x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

d. \(2x^3+3x^2-32x=48\)

\(\Leftrightarrow2x^3+3x^2-32x-48=0\)

\(\Leftrightarrow\left(2x^3-8x^2\right)+\left(5x^2-20x\right)-\left(12x-48\right)=0\)

\(\Leftrightarrow2x^2\left(x-4\right)+5x\left(x-4\right)-12\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x^2+5x-12\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left[\left(2x^2+8x\right)-\left(3x+12\right)\right]=0\)

\(\Leftrightarrow\left(x-4\right)\left[2x\left(x+4\right)-3\left(x+4\right)\right]=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\x=\frac{3}{2}\end{matrix}\right.\)

e. \(x^2+2x-15=0\)

\(\Leftrightarrow\left(x^2-3x\right)+\left(5x-15\right)=0\)

\(\Leftrightarrow x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
LH
Xem chi tiết
NC
Xem chi tiết
H24
Xem chi tiết
AT
Xem chi tiết
NC
Xem chi tiết
BH
Xem chi tiết
TL
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết