Violympic toán 8

ST

Giải các phương tình sau:

a) \(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)

b)\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)

c)\(2x\left(8x-1\right)^2\left(4x-1\right)=0\)

d)\(x^2-y^2+2x-4y-10=0\) ( x,y là các số nguyên dương )

PD
16 tháng 5 2018 lúc 20:14

d)\(x^2-y^2+2x-4y-10=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)=7\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)

\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)

Mà x,y nguyên dương\(\Rightarrow x-y-1< x+y+3\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y-1=1\\x+y+3=7\end{matrix}\right.\\\left\{{}\begin{matrix}x-y-1=-7\\x+y+3=-1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

Bình luận (1)
PL
17 tháng 5 2018 lúc 0:15

Mạn phép ko chép lại đề :

b) \(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)\left(x^2+\dfrac{1}{x^2}-x^2-2-\dfrac{1}{x^2}\right)=\left(x+4\right)^2\)

\(8\left(x+\dfrac{1}{x}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=\left(x+4\right)^2\) ( x # 0)

\(8\left(x^2+2+\dfrac{1}{x^2}-x^2-\dfrac{1}{x^2}\right)=\left(x+4\right)^2\)

⇔ ( x + 4)2 = 16

⇔ x2 + 8x + 16 = 16

⇔ x( x + 8) = 0

⇔ x = 0 ( KTM) hoặc : x = - 8 ( TM)

KL.....

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
TN
Xem chi tiết
NM
Xem chi tiết
HL
Xem chi tiết
VH
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
DH
Xem chi tiết
H24
Xem chi tiết