Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bài tập cuối chương I

QL

Giá trị lớn nhất của hàm số \(y = {\left( {x - 2} \right)^2}.{e^x}\) trên đoạn [1; 3] là:

A. 0.

B. \({e^3}\).

C. \({e^4}\).

D. e.

HM
26 tháng 3 2024 lúc 4:57

Ta có: \(y' = 2\left( {x - 2} \right){e^x} + {e^x}{\left( {x - 2} \right)^2},y' = 0 \Leftrightarrow 2\left( {x - 2} \right){e^x} + {e^x}{\left( {x - 2} \right)^2} = 0\)

\( \Leftrightarrow {e^x}\left( {2 + x - 2} \right)\left( {x - 2} \right) = 0 \Leftrightarrow x.{e^x}\left( {x - 2} \right) \Leftrightarrow x = 0\) hoặc \(x = 2\)

\(y\left( 0 \right) = 4;y\left( 1 \right) = e;y\left( 3 \right) = {e^3},y\left( 2 \right) = 0\)

Do đó, giá trị lớn nhất của hàm số \(y = {\left( {x - 2} \right)^2}.{e^x}\) trên đoạn [1; 3] là \({e^3}\).

Chọn B.

Bình luận (0)