Chương 5: ĐẠO HÀM

NB

f(x) = \(\sqrt{\left(1-x^2\right)^3}\) giải pt f(x)+f'(x)-\(\sqrt{1-x^2}\)=0

HH
30 tháng 4 2021 lúc 18:27

\(f'\left(x\right)=\dfrac{3}{2}\left(1-x^2\right)^{\dfrac{1}{2}}\left(1-x^2\right)'=-2x.\dfrac{3}{2}\sqrt{1-x^2}=-3x\sqrt{1-x^2}\)

\(pt\Leftrightarrow\sqrt{\left(1-x^2\right)^3}-3x\sqrt{1-x^2}-\sqrt{1-x^2}=0\)

\(DKXD:x^2\le1\Leftrightarrow-1\le x\le1\)

\(\sqrt{1-x^2}=t\Rightarrow pt\Leftrightarrow t^3-3xt-t=0\)

\(t=0\) la nghiem cua pt \(\Rightarrow x=\pm1\)

\(t\ne0\Rightarrow pt\Leftrightarrow t^2-3x-1=0\)

\(\Leftrightarrow1-x^2-3x-1=0\Leftrightarrow x\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\left(loai\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm1\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
JE
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
CG
Xem chi tiết
TT
Xem chi tiết
TH
Xem chi tiết
HM
Xem chi tiết
JE
Xem chi tiết
DC
Xem chi tiết