Ôn tập toán 7

TC

\(\frac{x}{z+t+y}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

Chứng minh p nguyên p= \(\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)

LH
12 tháng 2 2017 lúc 10:19

\(\frac{x}{z+t+y}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{z+t+y+z+t+x+t+x+y+x+y+z}=\frac{x+y+z+t}{3.\left(x+y+t+z\right)}=\frac{1}{3}\)

Bình luận (0)
LH
12 tháng 2 2017 lúc 10:20

bạn tự làm tiếp đi nhé

Bình luận (0)
DH
12 tháng 2 2017 lúc 15:51

\(\frac{x}{y+z+t}=\frac{y}{x+z+t}=\frac{z}{x+y+t}=\frac{t}{x+y+z}\)

\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{x+z+t}+1=\frac{z}{x+y+t}+1=\frac{t}{x+y+z}+1\)

\(\Leftrightarrow\frac{x}{x+y+z+t}=\frac{y}{x+y+z+t}=\frac{z}{x+y+z+t}=\frac{t}{x+y+z+t}\)

\(\Rightarrow x=y=z=t\) Thay vào p ta được

\(p=\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}=1+1+1+1=4\)

=> p là số nguyên (đpcm)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
BT
Xem chi tiết
H24
Xem chi tiết
KH
Xem chi tiết
TT
Xem chi tiết
NC
Xem chi tiết
HH
Xem chi tiết
DN
Xem chi tiết
DK
Xem chi tiết