Đại số lớp 8

H24

\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)

\(\frac{x+2}{x^2+2x+4}-\frac{x-2}{x^2-2x+4}=\frac{6}{x\left(x^4+4x^2+16\right)}\)

\(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}-\frac{1}{x}\) (a và b là hằng số , a và b khác 0)

PA
25 tháng 2 2017 lúc 20:59

\(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}-\frac{1}{x}\) (ĐKXĐ: x \(\ne\) 0 và x \(\ne\) a + b)

<=> \(\frac{1}{a+b-x}+\frac{1}{x}-\frac{1}{a}-\frac{1}{b}=0\)

<=> \(\frac{x}{x\left(a+b-x\right)}+\frac{a+b-x}{x\left(a+b-x\right)}-\frac{b}{ab}-\frac{a}{ab}\)

<=> \(\frac{a+b}{x\left(a+b-x\right)}-\frac{a+b}{ab}=0\)

<=> \(\left(a+b\right)\left(\frac{1}{x\left(a+b-x\right)}-\frac{1}{ab}\right)=0\)

* Nếu a = - b thì tập nghiệm cuả pt là S = R

* Nếu a \(\ne\) b thì \(\frac{1}{x\left(a+b-x\right)}-\frac{1}{ab}=0\)

<=> \(\frac{ab}{abx\left(a+b-x\right)}-\frac{x\left(a+b-x\right)}{abx\left(a+b-x\right)}=0\)

<=> \(\frac{ab-\text{ax}-bx+x^2}{abx\left(a+b-x\right)}=0\)

<=> \(\frac{b\left(a-x\right)-x\left(a-x\right)}{abx\left(a+b-x\right)}=0\)

<=> \(\frac{\left(a-x\right)\left(b-x\right)}{abx\left(a+b-x\right)}=0\)

<=> \(\left[\begin{matrix}a-x=0\\b-x=0\end{matrix}\right.\)

<=> \(\left[\begin{matrix}x=a\\x=b\end{matrix}\right.\)

Vậy tập nghiệm của pt là S = {a ; b}

Bình luận (0)
PA
25 tháng 2 2017 lúc 21:04

\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\) (ĐKXĐ: x \(\ne\) 0

<=> \(\frac{x\left(x+1\right)\left(x^2-x+1\right)}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}-\frac{x\left(x-1\right)\left(x^2+x+1\right)}{x\left(x^2-x+1\right)\left(x^2+x+1\right)}=\frac{3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

=> \(\left(x^4+x\right)-\left(x^4-x\right)=3\)

<=> \(2x-3=0\)

<=> \(x=\frac{3}{2}\) (nhận)

Vậy S = {1,5}

Bình luận (0)

Các câu hỏi tương tự
PG
Xem chi tiết
NT
Xem chi tiết
NA
Xem chi tiết
AP
Xem chi tiết
TL
Xem chi tiết
DV
Xem chi tiết
QL
Xem chi tiết
PD
Xem chi tiết
NL
Xem chi tiết