Ôn tập toán 8

QA

\(\frac{4xy}{y^2-x^2}:\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2-y^2}\right)=\)

VT
24 tháng 8 2016 lúc 10:20

\(\frac{4xy}{y^2-x^2}:\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2-y^2}\right)\)

\(=\frac{4xy}{\left(y-x\right)\left(y+x\right)}:\left(\frac{1}{\left(x+y\right)^2}-\frac{1}{\left(x-y\right)\left(x+y\right)}\right)\)

\(=\frac{4xy}{\left(y-x\right)\left(y+x\right)}:\frac{x-y-x-y}{\left(x-y\right)\left(x+y\right)^2}\)

\(=\frac{4xy}{\left(y-x\right)\left(y+x\right)}.\frac{\left(x-y\right)\left(x+y\right)^2}{-2y}=2x\left(x+y\right)\)

Bình luận (0)
ND
24 tháng 8 2016 lúc 14:57

\(\frac{4xy}{y^2-x^2}:\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2-y^2}\right)\)

\(=\frac{1}{\left(y-x\right)\left(y+x\right)}:\left(\frac{1}{\left(x+y\right)}-\frac{1}{\left(x-y\right)\left(x+y\right)}\right)\)

\(=\frac{4xy}{\left(y-x\right)\left(y+x\right)}:\frac{x-y-x-y}{\left(x-y\right)\left(x+y\right)^2}\)

\(=\frac{4xy}{\left(y-x\right)\left(y+x\right)}:\frac{\left(x-y\right)\left(x+y\right)^2}{-2y}=2x\left(x+y\right)\)

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
TK
Xem chi tiết
DN
Xem chi tiết
QA
Xem chi tiết
DN
Xem chi tiết
NL
Xem chi tiết
PA
Xem chi tiết
SL
Xem chi tiết
DN
Xem chi tiết