Bài 2: Tích phân

GS

em muốn hỏi cách làm câu này ạBài tập Tất cả

AH
24 tháng 8 2017 lúc 17:20

Lời giải:

Đặt \(I=\int \frac{\sqrt{x^2-1}dx}{x^3}\)

Nguyên hàm từng phần:

Đặt \(\left\{\begin{matrix} u=\sqrt{x^2-1}\\ dv=\frac{1}{x^3}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{x}{\sqrt{x^2-1}}dx\\ v=\frac{-1}{2x^2}\end{matrix}\right.\)

\(\Rightarrow I=\frac{-\sqrt{x^2-1}}{2x^2}+\int \frac{dx}{x\sqrt{x^2-1}}\)

Xét \(\int \frac{dx}{x\sqrt{x^2-1}}=\int \frac{d(x^2)}{2x^2\sqrt{x^2-1}}\). Đặt \(\sqrt{x^2-1}=t\rightarrow x^2=t^2+1\)

Khi đó, \(\int \frac{dx}{x\sqrt{x^2-1}}=\int \frac{d(t^2+1)}{2t(t^2+1)}=\int \frac{dt}{t^2+1}\)

Đặt \(t=\tan m\), đây là một dạng toán đặt quen thuộc, ta thu

được \(\int \frac{dx}{x\sqrt{x^2-1}}=\int \frac{dt}{t^2+1}=m=\tan ^{-1}t=\tan ^{-1}(\sqrt{x^2-1})\)

Do đó, \(\int \frac{\sqrt{x^2-1}dx}{x^3}=\frac{-\sqrt{x^2-1}}{2x^2}+\frac{1}{2}\tan ^{-1}(\sqrt{x^2-1})\)

\(\Rightarrow \int ^{\sqrt{2}}_{1}\frac{\sqrt{x^2-1}}{x^3}dx=\frac{\pi}{8}-\frac{1}{4}\)

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
TJ
Xem chi tiết
QT
Xem chi tiết
LH
Xem chi tiết
TL
Xem chi tiết
TL
Xem chi tiết
HT
Xem chi tiết
NK
Xem chi tiết
TT
Xem chi tiết