b) Ta có ΔDBC vuông tại D
\(=>tan\widehat{C}=\dfrac{BD}{DC}=>\dfrac{3}{4}=\dfrac{6}{DC}=>DC=\dfrac{4.6}{3}=8\)
\(=>AC=AD+DC=5+8=13\)
b) Ta có ΔDBC vuông tại D
\(=>tan\widehat{C}=\dfrac{BD}{DC}=>\dfrac{3}{4}=\dfrac{6}{DC}=>DC=\dfrac{4.6}{3}=8\)
\(=>AC=AD+DC=5+8=13\)
Đường cao BD của tam giác nhọn ABC bằng 6; đoạn thẳng AD bằng 5
a) Tính diện tích tam giác ABD
b) Tính AC, dùng các thông tin dưới đây nếu cần :
\(\sin C=\dfrac{3}{5};\cos C=\dfrac{4}{5};tgC=\dfrac{3}{4}\)
Cho tâm giác ABC có 3 góc nhọn.Kẻ BD vuông góc với AC. Biết BD= 6; AD= 5.
a)Tính diện tích tam giác ABD
b)Biết tanC = \(\dfrac{3}{4}\). Tính độ dài ba cạnh của tam giác ABC?
Giúp mình với chiều nay kiểm tra rồi !
Cho tam giác nhọn ABC . Gọi a,b,c là độ dài các cạnh đối diện với các đỉnh A,B,C .
a ) CM \(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)
b) Có thể sẫy ra đẳng thức : sinA=sinB+sinC
Cho tam giác ABC vuông tại A Biết :
1. sinc=1/3 tính AC. 2. cosc=2/5 tính AC
mong mn giúp đỡ
cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E là hình chiếu vuông góc của H trên AB,AC. Tính số đo các góc của tam giác HDE. Biết \(\dfrac{DE}{BC}\)\(=\dfrac{\sqrt{3}}{4}\)
Cho tam giác ABC vuông tại A ( AB\(\ne\) AC) Chứng minh rằng:
a) \(\dfrac{sinB-sinC}{cosB-cosc}\) <0
b) \(\dfrac{tanB-tanC}{cotB-cotC}\) <0
c) cotB+cotC>2
2. CMR với mọi góc nhọn \(\alpha\) ta có: tan2\(\alpha\) +1=\(\dfrac{1}{cos^2\alpha}\)
Cho tam giác ABC nhọn. C/m: \(\dfrac{a}{SinA}=\dfrac{b}{SinB}=\dfrac{c}{SinC}\)
Giúp mình với mai kiểm tra !
Cho tam giác nhọn ABC . Gọi a,b,c là độ dài các cạnh đối diện với các đỉnh A,B,C .
a ) C/M : \(\dfrac{a}{sin_A}=\dfrac{b}{sin_B}=\dfrac{c}{sin_C}\)
b) Có thể sẫy ra đẳng thức : sinA=sinB+sinC
cho tam giác ABC có 3 góc nhọn AB=c; AC=b, chứng minh:
a) \(\dfrac{SinA}{SinB}=\dfrac{a}{b}\)
b)\(\dfrac{a}{SinA}=\dfrac{b}{SinB}=\dfrac{c}{SinC}\)
1) Cho △ABC vuông tại A , chứng minh rằng \(\dfrac{AB}{AC}\)=\(\dfrac{cosB}{cosC}\)
2) Cho △ABC nhọn , 2 đường cao BD và CE . Hãy chứng minh △ADC đồng dạng với △ABC
3) Cho △ABC vuông tại A , AC=5cm , cotB = 2,4
a) Tính AB , BC
b) Tính các TSLG góc C