Bài 1. Đạo hàm

H24

Dùng định nghĩa để tính đạo hàm của các hàm số sau:

a) \(f\left( x \right) =  - {x^2}\);

b) \(f\left( x \right) = {x^3} - 2x\);

c) \(f\left( x \right) = \frac{4}{x}\).

HM
22 tháng 9 2023 lúc 14:49

a) Với bất kì \({x_0} \in \mathbb{R}\), ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( { - {x^2}} \right) - \left( { - x_0^2} \right)}}{{x - {x_0}}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - \left( {{x^2} - x_0^2} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - \left( {x - {x_0}} \right)\left( {x + {x_0}} \right)}}{{x - {x_0}}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \left( { - x - {x_0}} \right) =  - {x_0} - {x_0} =  - 2{{\rm{x}}_0}\)

Vậy \(f'\left( x \right) = {\left( { - {x^2}} \right)^\prime } =  - 2x\) trên \(\mathbb{R}\).

b) Với bất kì \({x_0} \in \mathbb{R}\), ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {{x^3} - 2{\rm{x}}} \right) - \left( {x_0^3 - 2{{\rm{x}}_0}} \right)}}{{x - {x_0}}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^3} - 2{\rm{x}} - x_0^3 + 2{{\rm{x}}_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {{x^3} - x_0^3} \right) - 2\left( {x - {x_0}} \right)}}{{x - {x_0}}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x.{x_0} + x_0^2} \right) - 2\left( {x - {x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x.{x_0} + x_0^2 - 2} \right)}}{{x - {x_0}}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x.{x_0} + x_0^2 - 2} \right) = x_0^2 + {x_0}.{x_0} + x_0^2 - 2 = 3{\rm{x}}_0^2 - 2\)

Vậy \(f'\left( x \right) = {\left( {{x^3} - 2{\rm{x}}} \right)^\prime } = 3{{\rm{x}}^2} - 2\) trên \(\mathbb{R}\).

c) Với bất kì \({x_0} \ne 0\), ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{4}{x} - \frac{4}{{{x_0}}}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{{4{x_0} - 4x}}{{x{x_0}}}}}{{x - {x_0}}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{4{x_0} - 4x}}{{x{x_0}\left( {x - {x_0}} \right)}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - 4\left( {x - {x_0}} \right)}}{{x{x_0}\left( {x - {x_0}} \right)}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - 4}}{{x{{\rm{x}}_0}}} = \frac{{ - 4}}{{{x_0}.{x_0}}} =  - \frac{4}{{x_0^2}}\)

Vậy \(f'\left( x \right) = {\left( {\frac{4}{x}} \right)^\prime } =  - \frac{4}{{{x^2}}}\) trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết