$4. Bất phương trình bậc hai một ẩn

QL

Dựa vào đồ thị hàm số bậc hai \(y = f\left( x \right)\) trong mỗi Hình 30a, 30b, 30c, hãy viết tập nghiệm của mỗi bất phương trình sau: \(f\left( x \right) > 0;f\left( x \right) < 0;\)\(f\left( x \right) \ge 0;f\left( x \right) \le 0\).

HM
23 tháng 9 2023 lúc 23:38

Hình 30a:

\(f\left( x \right) > 0\) có tập nghiệm là \(S = \left( { - \infty ;1} \right) \cup \left( {4; + \infty } \right)\)

\(f\left( x \right) < 0\) có tập nghiệm là \(S = \left( {1;4} \right)\)

\(f\left( x \right) \ge 0\) có tập nghiệm là \(S = \left( { - \infty ;1} \right] \cup \left[ {4; + \infty } \right)\)

\(f\left( x \right) \le 0\) có tập nghiệm là \(S = \left[ {1;4} \right]\)

Hình 30b:

\(f\left( x \right) > 0\) có tập nghiệm là \(S = \mathbb{R}\backslash \left\{ 2 \right\}\)

\(f\left( x \right) < 0\) có tập nghiệm là \(S = \emptyset \)

\(f\left( x \right) \ge 0\) có tập nghiệm là \(S = \mathbb{R}\)

\(f\left( x \right) \le 0\) có tập nghiệm là \(S = \left\{ 2 \right\}\)

Hình 30c:

\(f\left( x \right) > 0\) có tập nghiệm là \(S = \mathbb{R}\)

\(f\left( x \right) < 0\) có tập nghiệm là \(S = \emptyset \)

\(f\left( x \right) \ge 0\) có tập nghiệm là \(S = \mathbb{R}\)

\(f\left( x \right) \le 0\) có tập nghiệm là \(S = \emptyset \)

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết