Bài tập cuối chương VI

QL

Độ tuổi của 22 cầu thủ ở đội hình xuất phát của hai đội bóng đá được ghi lại ở bảng sau:

Đội A

Đội B

28

32

24

20

26

19

25

21

25

28

23

29

20

21

29

22

21

29

24

19

24

29

 a) Hãy tìm số trung bình, mốt, độ lệch chuẩn và tứ phân vị của tuổi mỗi cầu thủ của từng đội bóng.

b) Tuổi của các cầu thủ ở đội bóng nào đồng đều hơn? Tại sao?

HM
26 tháng 9 2023 lúc 23:01

a) Đội A:

+) Số trung bình: \(\overline x  = \frac{{28 + 24 + 26 + 25 + 25 + 23 + 20 + 29 + 21 + 24 + 24}}{{11}} = 24,45\)

+) Mốt: \({M_o} = 24\)

+) Phương sai \({S^2} = \frac{1}{{11}}\left( {{{28}^2} + {{24}^2} + ... + {{24}^2}} \right) - 24,{45^2} = 6,65\) => Độ lệch chuẩn \(S = \sqrt {{S^2}}  \approx 2,58\)

+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

Sắp xếp mẫu số liệu theo thứ tự không giảm: 20, 21, 23, 24, 24, 24, 25, 25, 26, 28, 29

\({Q_2} = {M_e} = 24\)

\({Q_1}\) là trung vị của nửa số liệu: 20, 21, 23, 24, 24. Do đó \({Q_1} = 23\)

\({Q_3}\) là trung vị của nửa số liệu: 25, 25, 26, 28, 29. Do đó \({Q_3} = 26\)

Đội B:

+) Số trung bình: \(\overline x  = \frac{{32 + 20 + 19 + 21 + 28 + 29 + 21 + 22 + 29 + 19 + 29}}{{11}} = 24,45\)

+) Mốt: \({M_o} = 29\)

+) Phương sai \({S^2} = \frac{1}{{11}}\left( {{{32}^2} + {{20}^2} + ... + {{29}^2}} \right) - 24,{45^2} = 22,12\) => Độ lệch chuẩn \(S = \sqrt {{S^2}}  \approx 4,7\)

+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

Sắp xếp mẫu số liệu theo thứ tự không giảm: 19, 19, 20, 21, 21, 22, 28, 29, 29, 29, 32.

\({Q_2} = {M_e} = 22\)

\({Q_1}\) là trung vị của nửa số liệu: 19, 19, 20, 21, 21. Do đó \({Q_1} = 20\)

\({Q_3}\) là trung vị của nửa số liệu: 28, 29, 29, 29, 32. Do đó \({Q_3} = 29\)

b)

Ta so sánh độ lệch chuẩn \(2,58 < 4,7\) do dó đội A có độ tuổi đồng đều hơn.

Chú ý

Ta không so sánh số trung vị vì không có giá trị nào quá lớn hay quá nhỏ so với các giá trị còn lại.

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết