Đề số 5

AP

\(\dfrac{3}{4x-20}+\dfrac{15}{50-2x^2}+\dfrac{7}{6x+30}=0\)

NL
22 tháng 2 2020 lúc 18:53

ĐKXĐ: \(\left\{{}\begin{matrix}4x-20\ne0\\50-2x^2\ne0\\6x+30\ne0\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}4x-20\ne0\\x^2-25\ne0\\6x+30\ne0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x-5\ne0\\x+5\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne5\\x\ne-5\end{matrix}\right.\)

=> \(x\ne\pm5\)

Ta có : \(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)

=> \(\frac{3}{4\left(x-5\right)}-\frac{15}{2\left(x-5\right)\left(x+5\right)}+\frac{7}{6\left(x+5\right)}=0\)

=> \(\frac{9\left(x+5\right)}{12\left(x^2-25\right)}-\frac{90}{12\left(x^2-25\right)}+\frac{14\left(x-5\right)}{12\left(x^2-25\right)}=0\)

=> \(9\left(x+5\right)-90+14\left(x-5\right)=0\)

=> \(9x+45-90+14x-70=0\)

=> \(23x=115\)

=> \(x=5\) ( KTM )

Vậy phương trình vô nghiệm .

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NL
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết