Bài 1: Tập hợp, phần tử của tập hợp

DN

\(\dfrac{1}{2!}\)+\(\dfrac{2}{3!}\)+\(\dfrac{3}{4!}\)+.............+\(\dfrac{99}{100!}\)<1

Tính

MS
19 tháng 3 2018 lúc 11:29

Xét thừa số tổng quát: \(n!=1.2.3...n\)

Ta có:

\(L=\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}\)

\(L=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+\dfrac{4-1}{4!}+...+\dfrac{100-1}{100!}\)

\(L=\dfrac{2-1}{1.2}+\dfrac{3-1}{1.2.3}+\dfrac{4-1}{1.2.3.4}+...+\dfrac{100-1}{1.2.3...100}\)

\(L=1-\dfrac{1}{1.2}+\dfrac{1}{1.2}-\dfrac{1}{1.2.3}+\dfrac{1}{1.2.3}-\dfrac{1}{1.2.3.4}+...+\dfrac{1}{1.2.3....99}-\dfrac{1}{1.2.3...100}\)

\(L=1-\dfrac{1}{1.2.3....100}< 1\left(đpcm\right)\)

Bình luận (0)
BM
29 tháng 4 2018 lúc 10:19

Xét thừa số tổng quát: n ! = 1.2.3 ... nn!=1.2.3 ...n

Ta có:

L = 1 2 !+ 2 3 !+ 3 4 !+ . . . + 99 100 !L=12!+23!+34!+...+99100!

L = 2 - 1 2 !+ 3 - 1 3 !+ 4 - 1 4 !+ . . . + 100 - 1 100 !L=2- -12!+3- -13!+4- -14!+...+100- -1100!

L = 2 - 1 1.2+ 3 - 1 1.2.3+ 4 - 1 1.2.3.4+ . . . + 100 - 1 1.2.3 ... 100L=2−11.2+3−11.2.3+4−11.2.3.4+...+100−11.2.3...100

L = 1 - 1 1.2+ 1 1.2- 1 1.2.3+ 1 1.2.3- 1 1.2.3.4+ . . . + 1 1.2.3 .... 99- 1 1.2.3 ... 100L=1−11.2+11.2−11.2.3+11.2.3−11.2.3.4+...+11.2.3....99−11.2.3 ... 100

L = 1 - 1 1.2.3 .... 100<1(đpcm)

Bình luận (0)

Các câu hỏi tương tự
CN
Xem chi tiết
TC
Xem chi tiết
H24
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết
SN
Xem chi tiết
TL
Xem chi tiết
DN
Xem chi tiết
BD
Xem chi tiết