Đại số lớp 6

TL

\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+......+\dfrac{1}{100.101}\)

PU
29 tháng 4 2017 lúc 17:42

\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{100.101}\)\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}\)\(=\dfrac{1}{2}-\dfrac{1}{101}=\dfrac{99}{202}\)

Bình luận (0)
PH
30 tháng 4 2017 lúc 9:21

CM công thức :

\(\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{n+a}{n\left(n+a\right)}-\dfrac{n}{n\left(n+a\right)}=\dfrac{a}{n\left(n+a\right)}\)Nhận xét :

\(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{100.101}=\dfrac{1}{100}-\dfrac{1}{101}\)

\(\Rightarrow\)\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

\(\dfrac{\Rightarrow1}{2}-\dfrac{1}{101}\)

=\(\dfrac{101}{202}-\dfrac{2}{202}=\dfrac{99}{202}\)

~ chúc bn học tốt~haha

Bình luận (0)

Các câu hỏi tương tự
KL
Xem chi tiết
KL
Xem chi tiết
KL
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
KL
Xem chi tiết
TH
Xem chi tiết
AM
Xem chi tiết
PL
Xem chi tiết