Violympic toán 7

TT

1, P = \(\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}\) - \(\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{2}{2004}}\)

2, Q = ( \(\dfrac{1,5+1-0,75}{2,5+\dfrac{5}{3}-1,25}\) + \(\dfrac{0,375-0,3+\dfrac{3}{11}+\dfrac{3}{12}}{-0,625+0,5-\dfrac{5}{11}-\dfrac{5}{12}}\) ) : \(\dfrac{1980}{3758}\) + 155

3, A = 1.3 + 2.4 + 3.5 +....+ 97.99 + 98.100

4, B = 1.2.3 + 2.3.4. +...+ 48.49.50

5, C = \(\dfrac{1}{1.2.3.4}\) + \(\dfrac{1}{2.3.4.5}\) +...+ \(\dfrac{1}{27.28.29.30}\)

6, D = 1 + \(2^2\) + \(2^4\) + \(2^6\) + .... +\(2^{200}\)

7, E = \(\dfrac{1}{3.5}\)+ \(\dfrac{5}{5.7}\) +...+ \(\dfrac{1}{97.99}\)

NT
31 tháng 10 2022 lúc 10:23

6:

\(4D=2^2+2^4+...+2^{202}\)

=>3D=2^202-1

hay \(D=\dfrac{2^{202}-1}{3}\)

7: \(=\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{32}{99}=\dfrac{16}{99}\)

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
NN
Xem chi tiết
ML
Xem chi tiết
WW
Xem chi tiết