1) ABC is a triangle where M is the midpoint of segment BC.
MD and ME are two bisectors of triangles AMB and AMC respectively.
If AM= m; BC = a . Then DE = ???
2)\(\dfrac{1}{\left(x+29\right)^2}+\dfrac{1}{\left(x+30\right)^2}=\dfrac{5}{4}\)
What is the product of all real solutions to the equation above?
3) The sum of all possible natural numbers n such that
\(n^2+n+1589\) is a perfect square is.....
4) Given that x is a positive integer such that x and x+99 are perfect squares
The sum of integer x is ...
5)The operation @ on two numbers produces a number equal to their sum minus 2. The value of
(...((1@2)@3....@2017)
6) Given f(x)=\(\dfrac{x^2}{2x-2x^2-1}\)
=> \(f\left(\dfrac{1}{2016}\right)+f\left(\dfrac{2}{2016}\right)+f\left(\dfrac{3}{2016}\right)+...+f\left(\dfrac{2016}{2016}\right)\)
Các bn giúp mk vs >>> tks nha!!!
find the smallest positive integer k for which \(\sqrt{6075\cdot k}\) is a whole number
Answer : the smallest positive integer k is ......
2. find the value of k such that the remainder is the greatest
k/13= 11Rx
K=
1) The rectangle has length p and breath q (cm), where p and q are intergers. If p and q satisfy the equation pq+q=13 + q2
then the maxnium area of the rectangle
2) Let a,b and c be positive intergers such that ab + bc=518 and ab-ac=360. Find the largest value of the product abc.
P/s: As you may now, These are some questions from the 8 round of Math Violympic. Plz help me as much as you can! Thanks for all!
Alice is playing with words. At each tick of her grandfather’s clock she swaps two letters. What is the smallest number of clock ticks during which she can change WORDS to SWORD?(A) 3 (B) 4 (C) 6 (D) 7 (E) 8
This pinwheel star is formed by rotating a right-angled triangle
around one of its corners. What is the angle at each of the nine
tips that are marked with dots?
(A) 30◦
(B) 40◦
(C) 45◦
(D) 50◦
(E) 60◦
I have twelve paint tins each capable of holding twelve litres. Half of them are half
full. A third of them are a third full. The rest are one-sixth full. How many litres of
paint do I have in total?
(A) 48 (B) 50 (C) 52 (D) 54 (E) 56
Let ABC be an isoceles triangle (AB = AC) and its area is 501cm2. BD is the internal bisector of the angle ABC (D ∈ AC), E is a point on the opposite ray of CA such that CE = CB. I is a point on BC such that CI = 1/2 BI. The line EI meets AB at K, BD meets KC at H. Find the area of the triangle AHC.
The average of three numbers is 42. All three are whole positive number and are different from each other.
If the least number is 20, what could be the greatest possible number of the remaining two numbers?
Answer: ......
Let a, b and c be positive integers. The sum of 160 and the square of a is equal the sum of 5 and the square of b. The sum of 320 and the square of a is equal to the sum of 5 and the square of c, a is
Find the value of n such that \(A=n^3-2n^2+2n-4\) is a prime number. The value of n is...
1 How many triples of integers (a,b,c) are there such that
?
2