Violympic toán 6

HN

ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC HÈ

Năm học 2006 – 2007

Thời gian: 130 phút

Bài 1. (2 điểm). Tính giá trị các biểu thức sau:

    với x = 0,98

Bài 2 (2 điểm)

a) Tìm số có 3 chữ số, biết rằng số đó chia hết cho 9 và các chữ số của nó tỉ lệ với 1; 2; 3.

b) Biết  . Tính giá trị biểu thức:  

Bài 3.(2 điểm)

TÌm giá trị nhỏ nhất của các biểu thức sau:

   

Bài 4 (3 điểm)

Cho tam giác ABC. Gọi M, N  theo thứ tự là trung điểm các cạnh AB và AC. Trên tia đối của tia NB lấy điểm E sao cho EN = BN. Trên tia đối của tia MC lấy điểm F sao cho FM = FA.

a) Chứng minh AE = FA

b) Chứng minh 3 điểm E, A, F thẳng hàng

c) Gọi I là giao điểm của 2 đường thẳng EC và FB. Chứng minh 3 đường thẳng BE, CF và AI đồng quy

Bài 5. (1 điểm)

Tìm số chính phương có 4 chữ số biết rằng số gồm 2 chữ số đầu lớn hơn số gồm 2 chữ số sau 1 đơn vị.

Bài 2:

a) Gọi số có 3 chữ số cần tìm là \(\overline{abc}\) ; theo đề bài ra số cần tìm phải thỏa mãn với điều kiện tổng \(\overline{\left(a+b+c\right)}⋮9\) 

Phải thỏa mãn 3 trường hợp sau:

(1) \(\overline{\left(a+b+c\right)}=9\) 

(2) \(\overline{\left(a+b+c\right)}=18\) 

(3) \(\overline{\left(a+b+c\right)}=27\) 

Vì \(\overline{abc}\) là các thừa số của 1 số có 3 chữ số nên tỉ lệ thức chung là \(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\) 

Ta có: \(\overline{\left(a+b+c\right)}:\left(1+2+3\right)\in\) N*

(1) \(\overline{\left(a+b+c\right)}=9\) 

\(\Rightarrow k=\dfrac{9}{6}=1,5\) (loại)

(2) \(\overline{\left(a+b+c\right)}=18\) 

\(\Rightarrow k=\dfrac{18}{6}=3\) (t/m)

(3) \(\overline{\left(a+b+c\right)}=27\) 

\(\Rightarrow k=\dfrac{27}{6}=4,5\) (loại)

Vậy ta có: duy nhất trường hợp \(\overline{\left(a+b+c\right)}=18\) 

Suy ra \(k=3\) 

Vậy \(\dfrac{a}{1}=3;\dfrac{b}{2}=3;\dfrac{c}{3}=3\) 

\(\Rightarrow a=3;b=6;c=9\) 

Vậy \(\overline{abc}=369\)

Bình luận (0)

Bài 5:

Đặt \(\overline{abcd}=k^2\) ta có \(\overline{ab}-\overline{cd}=1\) và \(k\in N\) , \(32\le k< 100\) 

\(\Rightarrow101\overline{cd}=k^2-100=\left(k-10\right).\left(k+10\right)\) 

\(\Rightarrow\left(k-10\right)⋮101\) hoặc \(\left(k+10\right)⋮101\)

Mà \(Ư\left(k-10;101\right)=1\) 

\(\Rightarrow\left(k+10\right)⋮101\) 

Vì \(32\le k< 100\) nên \(42\le k\pm10< 101\) 

\(\Rightarrow k=91^2\) 

\(\Rightarrow\overline{abcd}=91^2=8281\)

Bình luận (0)

Bình luận (0)

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
HN
Xem chi tiết
PV
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
HT
Xem chi tiết
PV
Xem chi tiết
LN
Xem chi tiết
Xem chi tiết