Violympic toán 7

H24

Đề bài ở dưới phần trả lời

NT
6 tháng 6 2020 lúc 21:27

Bài 1:

a) Xét ΔABC có MN<MP<NP(4cm<5cm<6cm)

mà góc đối diện với cạnh MN là \(\widehat{P}\)

và góc đối diện với cạnh MP là \(\widehat{N}\)

và góc đối diện với cạnh NP là \(\widehat{M}\)

nên \(\widehat{P}< \widehat{N}< \widehat{M}\)(định lí 1 về quan hệ giữa góc và cạnh đối diện trong tam giác)

b) Xét ΔMNP có \(\widehat{M}+\widehat{N}+\widehat{P}=180^0\)(định lí tổng ba góc trong một tam giác)

hay \(\widehat{P}=180^0-50^0-80^0=50^0\)

Xét ΔMNP có \(\widehat{P}=\widehat{M}< \widehat{N}\)

mà cạnh đối diện với \(\widehat{P}\) là MN

và cạnh đối diện với \(\widehat{M}\) là NP

và cạnh đối diện với \(\widehat{N}\) là PN

nên MN=NP<PN(Định lí 2 về quan hệ giữa cạnh và góc đối diện trong tam giác)

Bài 2:

1) Xét ΔABD và ΔECD có

DA=DE(D là trung điểm của AE)

\(\widehat{ADB}=\widehat{EDC}\)(hai góc đối đỉnh)

BD=CD(D là trung điểm của BC)

Do đó: ΔABD=ΔECD(c-g-c)

2) Ta có: ΔABD=ΔECD(cmt)

\(\widehat{DAB}=\widehat{DEC}\)(hai góc tương ứng)

\(\widehat{DAB}\)\(\widehat{DEC}\) là hai góc ở vị trí so le trong

nên CE//AB(dấu hiệu nhận biết hai đường thẳng song song)

Ta có: CE//AB(cmt)

AC⊥AB(ΔABC vuông tại A)

Do đó: CE⊥AC(Định lí 2 từ vuông góc tới song song)

3) Xét ΔCAB vuông tại A và ΔACE vuông tại C có

AB=CE(ΔADB=ΔEDC)

CA chung

Do đó: ΔCAB=ΔACE(hai cạnh góc vuông)

⇒CB=AE(hai cạnh tương ứng)

\(AE=2\cdot AD\)(D là trung điểm của AE)

nên \(BC=2\cdot AD\)(đpcm câu d)(1)

Xét ΔABC có AB+AC>BC(Bất đẳng thức trong tam giác ABC)(2)

Từ (1) và (2) suy ra \(AB+AC>2\cdot AD\)(đpcm)

Bình luận (0)
H24
6 tháng 6 2020 lúc 21:15

Violympic toán 7

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
SP
Xem chi tiết
TG
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
KT
Xem chi tiết