Chương 2: MẶT NÓN, MẶT TRỤ, MẶT CẦU

PV

Có một quả bóng hình cầu đặc đường kính 20cm được đặt đứng yên trên mặt phẳng nằm ngang. Người ta lấy một chiếc nón úp vào quả bóng thì thấy đáy nón vừa chạm với mặt phẳng nằm ngang và các đường sinh của mặt nón cũng vừa tiếp xúc với bề mặt của quả bóng. Biết rằng độ rộng của góc ở đỉnh nón là \(60^0\). Tính thể tích của khối nón giới hạn bởi chiếc nón và mặt phẳng nằm ngang và tính phần không gian bên trong khối nón mà không bị quả bóng chiếm chỗ

NN
18 tháng 4 2016 lúc 10:57

10cm A H B O

Giả sử căt hình đó thành 1 mặt phẳng đi qua trục của nón ta được thiết diện như hình vẽ. Trong đó tam giác ABC là tam giác đều và là thiết diện của khối nón. Hình tròn tâm I là thiết diện của quả bóng.

Ta nhận thấy tam giác ABC ngoại tiếp đường tròn tâm I

Hình nón có chiều cao là \(OH=3IH=30\) (cm)

Bán kính đáy nón là \(HA=\frac{30}{\sqrt{3}}=10\sqrt{3}\left(cm\right)\)

Thể tích khối nón là \(V_1=\frac{1}{3}OH.\pi.AH^2=\frac{1}{3}.30\pi.300=3000\pi\left(cm^3\right)\)

Thể tích phần không gian bên trong khối nón không bị quả bóng chiếm chỗ là :

\(V_2=\frac{1}{3}OH.\pi.AH^2-\frac{1}{4}\pi.IH^2=3000\pi-\frac{4000}{3}\pi=\frac{5000}{3}\pi\left(cm^3\right)\)

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
MO
Xem chi tiết
MO
Xem chi tiết
MO
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết
MO
Xem chi tiết
MO
Xem chi tiết
MO
Xem chi tiết