Bài 24: Hoán vị, chỉnh hợp và tổ hợp

QL

Có bao nhiêu số tự nhiên chia hết cho 5 mà mỗi số có bốn chữ số khác nhau?

HM
1 tháng 10 2023 lúc 20:33

Gọi số tự nhiên cần tìm là \(\overline {abcd} \).

-  Trường hợp 1:  \(d = 0\)

Mỗi cách chọn 3 số còn lại (a, b, c) (có xếp thứ tự ) trong 9 số còn lại (1, 2,...,9) là một chỉnh hợp chập 3 của 9.

Số cách chọn 3 chữ số còn lại là  \(A_9^3=504\)

-  Trường hợp 2: \(d = 5\) .

+ \(a \ne 0,d\) nên a có 8 cách chọn.

+ \(b \ne a,d\) nên b có 8 cách chọn.

+ \(c \ne a,b,d\) nên c có 7 cách chọn.

Vậy có: 504+ 8.8.7= 952 số tự nhiên chia hết cho 5 mà mỗi số có bốn chữ số khác nhau.

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết