Chương 2: HÀM SỐ LŨY THỪA. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

VD

có bao nhiêu giá trị nguyên của m để hàm số y=(m2-3)sinx-tanx nghịch biến trên (-π/2;π/2)

NL
8 tháng 12 2018 lúc 16:51

\(y'=\left(m^2-2\right)cosx-\dfrac{1}{cos^2x}\)

Để hàm số nghịch biến trên \(\left(\dfrac{-\pi}{2};\dfrac{\pi}{2}\right)\Rightarrow y'\le0\) \(\forall x\in\left(\dfrac{-\pi}{2};\dfrac{\pi}{2}\right)\)

Đặt \(cosx=t\Rightarrow0< t\le1\) \(\forall x\in\left(\dfrac{-\pi}{2};\dfrac{\pi}{2}\right)\)

\(y'=\left(m^2-2\right)t-\dfrac{1}{t^2}\le0\) \(\Leftrightarrow m^2-2\le\dfrac{1}{t^3}\Leftrightarrow m^2\le\dfrac{1}{t^3}+2\) \(\forall t\in\text{(0;1]}\)

Đặt \(f\left(t\right)=\dfrac{1}{t^3}+2\Rightarrow m^2\le\min\limits_{\text{(0;1]}}f\left(t\right)\)

\(f'\left(t\right)=-\dfrac{3}{t^4}< 0\) \(\forall t\in\text{(0;1]}\) \(\Rightarrow f\left(t\right)\) nghịch biến \(\Rightarrow\min\limits_{\text{(0;1]}}f\left(t\right)=f\left(1\right)=3\)

\(\Rightarrow m^2\le3\Rightarrow-\sqrt{3}\le m\le\sqrt{3}\) \(\Rightarrow m=\left\{-1;0;1\right\}\)

\(\Rightarrow\) có 3 giá trị nguyên của m để hàm số nghịch biến trên \(\left(\dfrac{-\pi}{2};\dfrac{\pi}{2}\right)\)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
H24
Xem chi tiết
PD
Xem chi tiết
PD
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
PD
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết