1.a) Chứng minh \(\dfrac{sin^4-cos^4}{sin+cos}=sin-cos\)
b) \(sin^6+cos^6+3cos^2\cdot sin^2=1\)
Cho tam giác ABC nhọn có ba cạnh a,b,c
CM: Diện tích tam giác ABC = \(\dfrac{1}{2}ab.\sin C\) = \(\dfrac{1}{2}bc.\sin A\) = \(\dfrac{1}{2}ac.\sin B\)
Chứng minh rằng: \(\dfrac{\sin\alpha+\cos\alpha-1}{1-\cos\alpha}\)=\(\dfrac{2\cdot\cos\alpha}{\sin\alpha-\cos\alpha+1}\)
Cho tam giác ABC vuông tại A có BC = a, CA = b, AB = c, đường cao AH.
a) Chứng minh: \(1+tam^2B=\dfrac{1}{cos^2B};tan\dfrac{C}{2}=\dfrac{c}{a+b}\)
b) Chứng minh: AH = a. sin B. cos B, BH=a·cos2B, CH=a·sin2B
c) Lấy D trên cạnh AC. Kẻ DE vuông góc BC tại E. Chứng minh:
sinB=\(\dfrac{AB\cdot AD+EB\cdot ED}{AB\cdot BE+DA\cdot DE}\) (
CMR:\(1,\tan\alpha\cdot\cot\alpha=1\)
\(2,\sin^2\alpha+\cos^2\alpha=1\)
\(3,\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha};\cot\alpha=\dfrac{\cos\alpha}{\tan\alpha}\)
Cho tam giác nhọn ABC,BC=a, AC=b,AB=c.CMR:
a,\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)
b,Có thể xảy ra :Sin A=Sin B+Sin c
Biết cot α=\(\sqrt{5}\). Tính giá trị biểu thức: A=\(\dfrac{\sin^2\alpha+\cos^2\alpha}{\sin\alpha.\cos\alpha}\)
Cho tam giác ABC nhọn có BC=a và H là trực tâm. Tia BH, CH theo thứ tự cắt AC,AB tại M,N
a)CM; ∠AMN=∠ABC
b)CM: \(BH\cdot BM+CH\cdot CN=a^2\)
c)Giả sử ∠MHN=120o. Tính AH và MN theo a
d)CM: \(\sin B\cdot\sin C-\cos C\cdot\cos B=\cos A\)
e)Giả sử∠A=2∠B.CM:\(AC^2+AB\cdot AC=a^2\)
Tam giác ABC vuông tại A có BC=20cm, AB=10cm
1. Giải tam giác ABC vuông và tính độ dài đường cao AH
2. Cminh: tgB, Sin B=\(\dfrac{HC}{AB}\)
3. Kẻ phân giác của góc BAC cắt BC tại I. Tính HI