a,cho A=\(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\) \(\frac{1}{7^{98}}-\frac{1}{7^{100}}\) .CMR:A<\(\frac{1}{50}\)
b,Giả sử có 2015 số nguyên dương \(a_1,a_2,a_3,...,a_{2015}\) thỏa mãn :\(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\frac{1}{a_4}+...+\) \(\frac{1}{a_{2015}}=1008\) .CMR:có ít nhất 2 trong 2015 số nguyên dương đã cho = nhau
Tính C
\(C=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+\frac{1}{7^4}+.....+\frac{1}{7^{50}}+\frac{1}{6.7^{50}}\)
chứng tỏ rằng \(\frac{1}{2^2}-\frac{1}{2^{\text{4}}}+\frac{1}{2^6}-.....+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+....+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}< 0,2\)
bài 1: tính A:=\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}-\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{2}{3}-\frac{1}{2}\)
Bài 2: Cho B=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{49}-\frac{1}{50}\)
Chứng minh rằng: \(\frac{7}{12}< A< \frac{5}{6}\)
Chứng minh rằng tổng :
\(S=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-...+\frac{1}{2^{4n-2}}-\frac{1}{2^{4n}}+...+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}< 0,2\)
CMR: \(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}< \dfrac{1}{50}\)
Chứng minh rằng :
\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
Chứng minh rằng :
\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)
CMR:
a) \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
b) Cho A = \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
CMR: \(\frac{7}{12}< A< \frac{5}{6}\)