Chương I : Số hữu tỉ. Số thực

NC

CMR: Nếu \(a;b;c\) là các số khác 0 thỏa mãn :\(\dfrac{ab+ac}{2}=\dfrac{bc+ba}{3}=\dfrac{ca+cb}{4}thì\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{15}\)

NH
17 tháng 7 2018 lúc 21:31

Theo t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{ab+ac}{2}=\dfrac{bc+ba}{3}=\dfrac{ca+cb}{4}\)

\(=\dfrac{ab+ac+bc+ba-ca-cb}{2+3-4}=\dfrac{2ab}{1}\) \(\left(1\right)\)

\(=\dfrac{bc+cb+bc+ba-ab-ac}{3+4-2}=\dfrac{2bc}{5}\left(2\right)\)

\(=\dfrac{ab+ac+ca+cb-bc-ba}{2+4-3}=\dfrac{2ac}{3}\)\(\left(3\right)\)

Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow\dfrac{2ab}{1}=\dfrac{2bc}{5}=\dfrac{2ac}{3}\)

\(\dfrac{2ab}{1}=\dfrac{2bc}{5}\Leftrightarrow\dfrac{a}{1}=\dfrac{c}{15}\) \(\Leftrightarrow\dfrac{a}{3}=\dfrac{c}{15}\left(I\right)\)

\(\dfrac{2bc}{5}=\dfrac{2ac}{3}\Leftrightarrow\dfrac{b}{5}=\dfrac{a}{3}\left(II\right)\)

Từ \(\left(I\right)+\left(II\right)\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{15}\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
QT
Xem chi tiết
TA
Xem chi tiết
NL
Xem chi tiết
NM
Xem chi tiết
NN
Xem chi tiết
37
Xem chi tiết
L7
Xem chi tiết
SK
Xem chi tiết