Violympic toán 7

LA

CMR: \(\dfrac{a}{b}=\dfrac{c}{d}\)thì \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{a.b}{c.d}\)

LA
30 tháng 10 2018 lúc 17:50

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) (k khác 0)

➩a=bk

c=dk

Thay a=bk và c=dk vào \(\dfrac{a^2+b^2}{c^2+d^2}\)\(\dfrac{a.b}{c.d}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2.k^2+b^2}{d^2.k^2+d^2}=\dfrac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)

\(\dfrac{a.b}{c.d}=\dfrac{b.k.b}{d.k.d}=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{a.b}{c.d}\) (đpcm)

Bình luận (0)
H24
30 tháng 10 2018 lúc 17:54

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta có:

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\) (1)

\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2.k}{d^2.k}=\dfrac{b^2}{d^2}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\left(dpcm\right)\)

Bình luận (0)
CK
30 tháng 10 2018 lúc 18:33

Từ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a\cdot b}{c\cdot d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có :

\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a\cdot b}{c\cdot d}=\dfrac{a^2+b^2}{c^2+d^2}\) (đpcm)

Bình luận (0)

Các câu hỏi tương tự
LV
Xem chi tiết
SS
Xem chi tiết
NT
Xem chi tiết
CV
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
NH
Xem chi tiết
DT
Xem chi tiết