Các bạn chỉ cần giúp mk câu b, c, e, f,
bạn cứ đặt công thức gốc là k sau đó thay vào các câu là được thui
Các bạn chỉ cần giúp mk câu b, c, e, f,
bạn cứ đặt công thức gốc là k sau đó thay vào các câu là được thui
Chứng minh : \(\dfrac{a}{b}=\dfrac{c}{d}\) nếu biết :
a,\(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
b,\(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\)
c,\(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
d,\(\dfrac{4a-3b}{a}=\dfrac{4c-3d}{c}\)
e,\(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Chứng minh \(\dfrac{a}{b}=\dfrac{c}{d}\) nếu biết :
a,\(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
b,\(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\)
c,\(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
d,\(\dfrac{4a-3b}{a}=\dfrac{4c-3d}{c}\)
e,\(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Cho a+b+c+d khác 0 sao cho: \(\dfrac{b+c+d}{a}=\dfrac{a+c+d}{b}=\dfrac{b+a+d}{c}=\dfrac{c+b+a}{d}\)
Hãy tính: M = \(\dfrac{2a+5b}{3c+4d}-\dfrac{2b+5c}{3d+4a}-\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
1.C/m rằng
Nếu \(\dfrac{a}{b}=\dfrac{a}{c}\) thì
a,\(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{3c+3d}\)
b,\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
c,\(\left(\dfrac{a-b}{c-d}\right)^4=\dfrac{a^4+b^4}{c^4+d^4}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . CMR :
\(a,\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
\(b,\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{a^3-b^3}{c^3-d^3}\)
CMR nếu \(\dfrac{a}{b}=\dfrac{c}{d}\)thì
a, \(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\)
b, \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
c,\(\left(\dfrac{a-b}{c-d}\right)^4=\dfrac{a^4+b^4}{c^4+d^4}\)
Cho \(\dfrac{a}{b} = \dfrac{c}{d}\) . Chứng minh :
a, \((a+c).((b-d)=(a-c).(b-d)\)
b, \((a+c).b=(b+d).a\)
c, \(a.(b-d)=b(a-c)\)
d, \((b+d).c=(a+c).d\)
e, \((b-d).c=(a-c).d\)
f, \((a+b).(c-d)=(a-b).(c+d)\)
g, \((2a+3c).(2b-3d)=(2a-3c).(2b+3d)\)
h, \((4a+3b).(4c-3d)=(4a-3b).((4c+3d)\)
i, \((2a+3b).(4c-5d)=(4a-5b).(2c+3d)\)
k, \((4a+5b).(7c-11d)=(7a-11b).(4c+5d)\)
Chứng minh \(\dfrac{a}{b} = \dfrac{c}{d}\) nếu biết
a, \(\dfrac {4a-3b}{4c-3d} = \dfrac {4a+3b}{4c+3d}\)
b, \(\dfrac {2a-3b}{2a+3b} = \dfrac {2c-3d}{2c+3d}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh:
a) \(\dfrac{a}{c}=\dfrac{a+b}{c+d}\)
b) \(\dfrac{b}{d}=\dfrac{a-b}{c-d}\)
c) \(\dfrac{2a+3b}{2c+3d}\)= \(\dfrac{4a-5b}{4c-5d}\)
d) \(\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
e) \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)
g) \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{a^2-c^2}{b^2-d^2}\)
Các bn giúp mk nhanh nha. Tối nay mk phải nộp cho thầy r. Mk sẽ tick cho.