thế thì ai làm đi ở dấy mà cười
Sao chỉ có bình luận xuông mà không a quan tâm đến câu hỏi vậy
Ta có :
\(A=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\)
\(\Rightarrow3A=1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)
\(\Rightarrow4A=3A+A=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)
\(\Rightarrow12A=3.4A=3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{97}}-\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\)
\(\Rightarrow16A=12A+4A=3-\dfrac{1}{3^{99}}-\dfrac{100}{3^{99}}-\dfrac{100}{3^{100}}\)
\(\Rightarrow16A=3-\dfrac{101}{3^{99}}-\dfrac{100}{3^{100}}\)
\(\Leftrightarrow A=\dfrac{3}{16}-\dfrac{\left(\dfrac{101}{3^{99}}+\dfrac{100}{3^{100}}\right)}{16}< \dfrac{3}{16}\)