Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 7

H24

cm với x;y;z;t\(\in N\)* thì

\(A=\dfrac{x}{x+y+z}+\dfrac{y}{y+z+t}+\dfrac{z}{z+t+x}+\dfrac{t}{t+x+y}\)ko thuộc N

H24
2 tháng 10 2017 lúc 18:22

Đặt:

\(linh=\dfrac{x}{x+y+z}+\dfrac{y}{y+z+t}+\dfrac{z}{z+t+x}+\dfrac{t}{t+x+y}\)

Giả sử: \(linh\in N\)

Điều này chứng tỏ:

\(\left\{{}\begin{matrix}\dfrac{x}{x+y+z}\in N\\\dfrac{y}{y+z+t}\in N\\\dfrac{z}{z+t+x}\in N\\\dfrac{t}{t+x+y}\in N\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x⋮x+y+z\\y⋮y+z+t\\z⋮z+t+x\\t⋮t+x+y\end{matrix}\right.\)

\(x;y;z;t\in N\circledast\) nên điều trên tương đương với:

\(\left\{{}\begin{matrix}x\ge x+y+z\\y\ge y+z+t\\z\ge z+t+x\\t\ge t+x+y\end{matrix}\right.\)(Không thể đồng thời xảy ra)
Nên: Điều giả sử sai,\(linh\notin N\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
QN
Xem chi tiết
BC
Xem chi tiết
TK
Xem chi tiết
NH
Xem chi tiết
TK
Xem chi tiết
KN
Xem chi tiết
YY
Xem chi tiết
DX
Xem chi tiết