Ôn tập toán 6

NL

cm 3/4+8/9+15/16+.....+9999/10000<99

NH
18 tháng 4 2017 lúc 20:03

Đặt :

\(A=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+................+\dfrac{9999}{10000}\)

\(A=\dfrac{1.3}{2^2}+\dfrac{2.4}{3^2}+\dfrac{3.5}{4^2}+....................+\dfrac{99.101}{100^2}\)

\(A=\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+..................+\dfrac{100^2-1}{100^2}\)

\(A=\dfrac{2^2}{2^2}-\dfrac{1}{2^2}+\dfrac{3^3}{3^2}-\dfrac{1}{3^2}+............+\dfrac{100^2}{100^2}-\dfrac{1}{100^2}\)

\(A=\left(\dfrac{2^2}{2^2}+\dfrac{3^3}{3^3}+...........+\dfrac{100^2}{100^2}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^3}+........+\dfrac{1}{100^2}\right)\)

\(A=\left(1+1+........+1\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^3}+............+\dfrac{1}{100^2}\right)\)

\(A=99-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+..........+\dfrac{1}{100^2}\right)\)

Ta có :

\(\dfrac{1}{2^2}+\dfrac{1}{3^3}+............+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...........+\dfrac{1}{99.100}\)\(\dfrac{1}{2^2}+........+\dfrac{1}{100^2}< \dfrac{1}{1}-\dfrac{1}{2}+.......+\dfrac{1}{99}-\dfrac{1}{100}\)\(\Rightarrow\dfrac{1}{2^2}+.........+\dfrac{1}{100^2}< 1-\dfrac{1}{100}\)

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+.........+\dfrac{1}{100^2}< \dfrac{100}{101}\)

\(\Rightarrow99-\left(\dfrac{1}{2^2}+...........+\dfrac{1}{100^2}\right)< 99-\dfrac{100}{101}\)

\(\Rightarrow A< 99-\dfrac{100}{101}\)

\(\Rightarrow a< 99\rightarrowđpcm\)

~ Học tốt ~

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
BL
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
ND
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết