Ôn tập toán 7

NP

Chứng tỏ rằng:

A=1/5 + 1/13 + 1/25 + ... + 1/2.n^2 + 2n+1 < 1/2 với n thuộc N*

VT
21 tháng 7 2016 lúc 10:11

\(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{2.n^2+2n+1}< \frac{1}{4}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{2.n^2+2n}\)

\(A< \frac{1}{2}.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n.\left(n+1\right)}\right)\)

\(A< \frac{1}{2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n.\left(n+1\right)}\right)\)

\(A< \frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{n}-\frac{1}{n+1}\right)\)

\(A< \frac{1}{2}.\left(1-\frac{1}{n+1}\right)< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
DL
Xem chi tiết
TQ
Xem chi tiết
HP
Xem chi tiết
CN
Xem chi tiết
TH
Xem chi tiết
NM
Xem chi tiết
NM
Xem chi tiết
NH
Xem chi tiết
LV
Xem chi tiết