Ôn tập toán 6

HV

Chứng tỏ rằng nếu phân số \(\frac{7n^2+1}{6}\) là số tự nhiên với n thuộc N thì các phân số \(\frac{n}{3}\)\(\frac{n}{2}\) là phân số tối giản

Giải cụ thể hộ mình nha !!!ngaingung

NH
10 tháng 3 2017 lúc 19:21

\(Ta\) \(có\) \(:\)

\(\dfrac{7n^2+1}{6}\) \(\in N\)

\(\Rightarrow7n^2+1\equiv0\)\(\left(mod6\right)\)

\(\Rightarrow7n^2\equiv7\left(mod6\right)\)

\(\Rightarrow n^2\equiv1\left(mod6\right)\)

\(\Rightarrow n^2-1\equiv0\left(mod6\right)\)

\(\Rightarrow\left(n-1\right)\left(n+1\right)\equiv0\left(mod6\right)\)

\(\Rightarrow\left(n-1\right)\left(n+1\right)⋮6\)

+) Nếu n là số chẵn thì n - 1, n+1 là số lẻ ( vô lí vì \(\left(n-1\right)\left(n+1\right)⋮6\))\(\rightarrow\) loại

+)Nếu n là số lẻ \(\Rightarrow\dfrac{n}{2}\) là phân số tối giản

Vì (n -1)(n+1) \(⋮\) 6 \(\Rightarrow\) 1 trong 2 số chia hết cho 3

Mà n - 1, n , n +1 là 3 số tự nhiên liên tiếp ( \(n\in N\)) nên chỉ có duy nhất 1 số chia hết cho 3

\(\Rightarrow\) \(n\) \(⋮̸\) \(3\)

\(\Rightarrow\dfrac{n}{3}\)là phân số tối giản

Vậy phân số \(\dfrac{7n^2+1}{6}\) nhận giá trị là các số tự nhiên thì các phân số \(\dfrac{n}{2}\)\(\dfrac{n}{3}\) là các phân số tối giản \(\Rightarrowđpcm\)

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
LT
Xem chi tiết
NT
Xem chi tiết
AJ
Xem chi tiết
LT
Xem chi tiết
BY
Xem chi tiết
LT
Xem chi tiết
LT
Xem chi tiết
TM
Xem chi tiết